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Abstract. This amicie considers horizontal Lagrangian sub-bundles of a cotangent bundie 
T'N that contain the dynamical vector field of a Hamiltonian system. It is shown that if 
the Hamiltonian is quadratic on the fibres of T*N, then all such sub-bundles can be 
charanerized as solutions to a system of algebro-partial differential equations that are 
defined solely in terms of vertical quantities. This system of equations has a universal 
solution. The universal solution is applied to the study of the geometry of the Lorentz 
force law. It is shown that the dynamical flow of the Lorentz farce law on T*N i s  a 

connection is given by an extension of Cartan's first stmcture equation to non-linear 
connections. 
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1. Introduction 

One of the most fundamental ingredients in the study of the geometry of second-order 
mechanical systems on manifolds is the choice of certain horizontal distributions over 
the tangent bundle TN or the cotangent bundle T * N  of a configuration space N. 
When the dynamics of a second order system is formulated on T*N the most important 
examples of such distributions are Lagrangian distributions that contain the second 
order flow. If the second order system is Hamiltonian, examples of such sub-bundles 
are the tangent aistriiiuiion to a compiete soiuiion io ihe Hamiiton-jacobi equaiions, 
and Jacobi distributions determined by the Riccati equation for the corresponding 
variational problem (Klingenberg 1982 p 276). This paper will present necessary and 
sufficient condition for the existence of such distributions for Hamiltonian that are 
quadratic in the fibres of T*N. 

In more precise terms, a Hamilton-Jacobi distribution is a horizontal Lagrangian 

If a Hamilton-Jacobi distribution annihilates dim N such functions then the 
Hamiltonian system is completely integrable. For a large class of Hamiltonians, 
however, there exist non-integrable Hamilton-Jacobi distributions. For example if the 
Hamiltonian vector field of h induces a spray on TN there is a canonical Hamilton- 
Jacobi distribution for h (Crampin 1971, Klein 1982). When h is the metric Hamiltonian 

Civiti connection. For dynamical vector fields that are not sprays the canonical 
construction fails to produce a Hamilton-Jacobi distribution because, although the 
canonical horizontal sub-bundle is Lagrangian, it does not contain the dynamical field 
(Crampin 1971). 
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The horizontal sub-bundle of the Levi-CivitA connection is uniquely determined 
among all Hamilton-Jacobi distributions for metric Hamiltonian by the fact that it 
gives a linear connection on N. The linearity of an associated connection is related to 
the vertical behaviour of the horizontal sub-bundle. This article will show that for a 
fibrewise quadratic function the Hamilton-Jacobi condition can in fact be stated in 
terms of vertical properties of horizontal sub-bundles. In this context the linearity of 
the horizontal sub-bundle of the Levi-Civiti connection appears as a consequence of 
this characterization. It will be shown that all Hamilton-Jacobi distributions of fibrewise 
quadratic Hamiltonians satisfy a system of algebro-partial differential equations defined 
along the fibres of T*N. Further, it will be shown that these equations have a universal 
solution that gives global Hamilton-Jacobi distributions for quadratic Hamiltonians 
that do not give rise to sprays on TN. 

An application of these results leads to a new perspective on the relation between 

electromagnetic field on a charged particle is given by the Lorentz force law. If y : W + N 
is the world-trajectory of a charged particle then the Lorentz force law states that y 
satisfies D,9= 6(y), where ê  is a skew-symmetric (1, 1)-tensor called the Faraday 
tensor and D is the Levi-Civith covariant derivative. A vector field whose flow satisfies 
this equation is called a Lorentz vector field. One difference between a Lorentz vector 
field and a geodesic vector field is that the variation of a Lorentz vector field necessarily 
has a non-vanishing rotational component. In fact, if the Lorentz vector field has 
constant length, then the generator of the rotation is the Faraday tensor. If a metric 
connection has torsion, then the variation of a geodesic vector field also acquires a 
rotational component. The question is whether the torsion can be chosen so that the 
torsional rotation cancels the rotation induced b y  the Faraday tensor making the 
Lorentz vector field geodesic for an asymmetric connection. This question was asked 
by Einstein and others in their search for a unified theory of gravity and electromagnet- 
ism during the 1920s (Einstein 1928). A cursory study shows that on configuration 
space the torsion has this property only along curves. However, the Hamiltonian for 
the Lorentz force law is quadratic in the fibre of the cotangent bundle and so a global 
Hamilton-Jacobi distribution can be found. A translate of this sub-bundle can be used 
to construct on T*N a metric connection with torsion relative to which the dynamical 
flow of the Lorentz force law is geodesic. In fact, the relation between the electromag- 
netic force and the torsion of this connection is given by an extension of Cartan's first 
structure equation to arbitrary horizontal sub-bundles of TIN.  
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1.1. Background and basic notions 

This paper is concerned with the category of polarized symplectic manifolds. The 
objects of this category are triples ( M ,  X ,  w ) ,  where M is a 2n-dimensional smooth 
manifold that possesses a non-degenerate closed differential 2-form U,  referred to as 
a symplectic form, and a completely integrable Lagrangian sub-bundle X ;  that is, 
X ,  c TM, is an n-dimensional subspace on which w vanishes. The principal example 
of such a structure is the cotangent bundle of a smooth manifold N. In this case, X 
is the vertical bundle of T :  T * N +  N. T*N possesses a canonical differential 2-form 
w=da,where a isthetautological l-formdefinedbya(u)=p(rr,u),foruE T(T*N) , .  
Although the Hamilton-Jacobi construction will in general require the full structure 
of the cotangent bundle, for both conceptual and computational reasons it is preferable 
for the most part to work with polarized manifolds. 
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First introduce the following basic categories of differential objects. If M is a 
smooth manifold let F ( M )  denote the ring of smooth functions on M, and denote by 
%(M) the F(M)-module of smooth vector fields on M. Denote by Z 9 ( M )  the 
F(M)-module of differential q-forms on M. 

Some specializations of certain geometric objects to foliated manifolds will be 
required. Suppose that TM possesses a sub-bundle X. Let %(X) be the F( M)-module 
of vector fields with values in X. Denote by F ( X )  the ring of smooth functions that 
are annihilated by X. If X is integrable, then F(X) is the set of functions constant 
on the leaves of X. A partial linear connection along X is an R-linear map V :  %(XI X 

% ( M ) + % ( M )  that is F(M)-linear in the first argument and is an F(M)-derivation 
in the second. In terms of sub-bundles of TM a partial connection can be associated 
with those sub-bundles H with the property that T * :  H + X is a bundle isomorphism. 

On a foliated manifold one works with geometric objects that are in the following 
sense weaker than tensors. Let % be an F(M)-module.  A partial tensor along X is an 
R-multilinear map F :X:=, % ( M ) +  9l that is F(X)-multilinear. In this article % will 
be %I(M) or F ( M ) .  Partial tensors will be used to succinctly treat arbitrary jets of 
vertical vector fields (Saunders 1987). 

It is well known that an F(M)-multilinear map F on %(M) transforms under the 
pseudogroup of local diffeomorphisms as a first order geometric object. This means 
that components of F in the diffeomorphic image of a given frame are independent 
of the derivatives of the transition functions. With partial tensors the situation is more 
complicated. A partial tensor transforms as a first order object only among frames 
where the transition functions are in F(X). Therefore to fix a representation as a first 
order geometric object requires an additional geometric structure. 

One class of geometric structures that fix a first order representation for partial 
tensors are polarized symplectic manifolds. If M is a symplectic manifold and X is 
an integrable Lagrangian distribution, then the leaves of X possess a flat symmetric 
connection 6 that is defined in terms of the Lie derivative and the dual map U # :  T*M + 

TM given by w x - ' ( u ) =  L ( U ) W  for U E  TM (Weinstein 1977). For U, V E ~ ( X )  define 
~, ,V=wX(Luw"-'(  V)) .  A simple calculation shows that because X is Lagrangian and 
d w = O  both the curvature and the torsion of $ vanish. Elements of 2 ( X )  that are 
parallel relative to 6 are called afine vector fields. The affine vector fields form an 
F(X)-module denoted by &(XI. 

To obtain an F(X)-module that pointwise spans TM, introduce a sub-bundle Y 
complementary to X; that is, XO Y = TM. Viewed as a vector bundle over the leaves 
of X, Y possesses a natural linear connection V defined for U E 2 ( X )  and V E  %I( Y )  
by e , V = P [  U, VI where P is the projection onto Y with kernel X. Denote by %( Y )  
the F(X)-module of vector fields in 2( Y )  that are parallel relative to t. If X foliates 
M to a submersion p :  M + N then %( Y )  is the set of vector fields U such that p* U 
is a vector field. The F(X)-module &(X)O%( Y) provides a class of basis vector 
fields with respect to which partial tensors along X can be represented as first order 
objects. Note that sP(X)O%(  Y )  is the F(X)-module of parallel fields relative to the 
parital connection V =+@a. 

The partial tensors that are of particular importance here are naturally associated 
with an integrable Lagrangian sub-bundle X and a complementary distribution Y 
(Kostant 1974, Hess 1979). For W E  %( U) define Cw:X:z :  % ( X ) + Z ( X )  by 

CW(U0, .  . . , u")=auo,  [U,, . . . ,  [U",  W I . .  . ] I ) .  
Here 9 denotes symmetrization over U,, . . . , U,. Extend Cw to a partial tensor on 
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M by defining Cw( U,, . . . , U") to be zero if U, E %( Y )  for some i. The following 
proposition gives the properties of Cw. 

Lemma 1.1. (1) C ,  is S(X)-linear. (2) If f e S ( X ) ,  then Cw=fCw.  (3) If Y is 
Lagrangian then for U,, . . . , U. E d ( X )  and W, V E  %( Y), 

(1.1) w(Cw(U0,  ..., U"), V)=w(CdUo ,..., Un), W). 

Note for future reference that if X is the vertical sub-bundle of T*N and Y is a 
horizontal sub-bundle, then Y is associated with a linear connection on N if and only 
if Cw(U,  V)=Oforall U, V E . ~ ( X ) .  

2. HamiltonJacobi sub-bundles 

Although the geometric structures used in this paper are specific to the cotangent 
bundle, it is easier to introduce them on a polarized symplectic manifold ( M ,  X, U ) .  

Recall that the leaves of X a,'e affine manifolds; that is, on each leaf there is a transitive 
W-action. The connection V is the flat connection defined by this action. A function 
f on an affine manifold L is quadratic if UVWf= 0 for all triples of affine vector fields. 
The space of quadratic functions on an affine manifold L is invariant under the action 
of the group of affine transformations of L. For example, if L is R", then quadratic 
functions have the form &x, x ) + A ( x ) + p  where q is the Hessian, A ER"., and p ER.  
A complete set of algebraic invariants for the action of the affine group on the quadratic 
functions on R" is the signature of q and the discriminant q(A,A)-4p. A function f 
on a polarized symplectic manifold ( M ,  X, w )  is fibrewise quadratic if its restriction to 
the leaves of X is quadratic. A fibrewise quadratic function is non-degenerate if its 
Hessian along X is non-degenerate. The Hessian of a non-degenerate fibrewise quad- 
ratic function gives a fibre metric q on X. 

If X possesses a complementary sub-bundle Y then a fibre metric q induces an 
almost Hermitian structure (M, J,  g )  on M (Crampin 1981, Morandi et al 1990). where 
g is the almost Hermitian metric for the almost complex structure J. To construct J 
and g, first observe that X n Y = 0, implies that X n Y l -  = 0. Here Y'" is the comple- 
ment of Y relative to w. Therefore, w ' :  Y*+ X is an isomorphism. Consequently, for 
U, VEX,  let q ( u , v ) = w ( u , J v ) ,  and for U E Y ~  and VEX,  let q ( J u , u ) = w ( u , u ) .  To 
extend q to TM for U, U E Y,, let g(u, U) = q(Ju, J v )  and for U E Yp and v E X,, let 
g(u,  U) = w ( u ,  J v ) .  It is easy to see that if Y is Lagrangian then w is am almost Kahler 
form. Notice also that X and Y are orthogonal relative to g if and only if Y is 
Lagrangian. In general, if is the complement relative to g then X's= Y'- and 
YLx= J(XLs). 

When Y is Lagrangian there is a special relation between J and the partial 
connection v introduced in the previous section. 

Lemma 2.1. If Y is a Lagrangian complement to X then T J  = 0 and for U E d ( X ) J U  E 
w Y ) .  

Proof: The fact that P J  = 0 follows from the fact that 
statement follows from the first. 

= 0 and ?g = 0. The second 
0 
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Another important class of affine geometric objects are the radial vector fields. If 
L is an affine manifold and if V is the flat symmetric affine connection then a vector 
field V is said to be V-radial if the (1, 1)-tensor VV is the identity. It is a classical 
result (Kobayashi and Nomizu 1963 p 193, Beem 1978), that if an affine manifold 
possesses a global radial vector field, then it is affinely equivalent to R" with the 
canonical radial field. The flow of a radial vector field V is just a reparametrization 
of a flow of geodesics emanating from the unique zero of V .  This point will be called 

The notion of a radial vector field can also be extended to polarized symplectic 
manifolds. A vector field W E  % ( X )  is ?'-radial if for U E %(X)?',W= U. In the case 
of a polarized symplectic manifold the existence of a ?-radial vector field together 
with a Lagrangian submanifold transverse to X implies that M is symplectomorphic 
to a cotangent bundle (Guillemin and Sternberg 1977 p 228). The radial vector fields 

vector field with the property that L ( X , ) ~  = a. 

Lemma2.2. If p ~ g ' ( M )  satisfies p ( X ) = O  and L(U)(dp-w)=O for all U E E ( X )  
then X, is ?-radial. 

ProoJ First since p ( X ) = O ,  $ is a vector field along X .  By the definition of 0, for 
ci 

Therefore if a is a 1-form that satisfies a(X) = O  and d a  = o, then X ,  is ?'-radial. 
In  the case of T*N, it is easy to see that the canonical 1-form satisfies these conditions 
and that the corresponding radial vector field has the zero section as its origin. 

Radial vector fields are important because they extend the space of affine vector 

U E  R(X) thereis k E R  with v',W=kU. Noticethat % ( X )  isisomorphic to . d ( X ) O R .  
This follows since if K is the element of B ( X ) *  given by ~ , W = K (  W)U, then for 
K(W)#O, ( l / ~ ( W ) W i s 9 - r a d i a l  andsoX, - ( l /K(W))Wisaf f ine .  

Using the geometric structure introduced so far it is possible to characterize the 
Lagrangian sub-bundles Y of TM that are complementary to X and that annihilate 
a non-degenerate fibrewise quadratic function h. Recall that such sub-bundles are 
called Hamilton-Jacobi distributions. The argument to be presented relies on the 
existence of a ?-radial vector field, and although it can be extended to the case of 
fibrewise quadratic functions with non-vanishing discriminant, our attention will be 
restricted to the geometrically and physically more important case where the dis- 
criminant function vanishes. Let q be the Hessian of h. Under the above assumption 
it is easy to see that there is a 9-radial vector field X ,  such that h = f q ( X , ,  X p ) .  
Without the discriminant condition a fibrewise quadratic function can be expressed 
in terms of two radial fields X ,  and X i  as h = f q ( X , ,  X i ) .  

Instead of constructing Hamilton-Jacobi sub-bundles directly, one seeks an almost 
complex structure J on M with the properties that (i) X is a real sub-bundle, (ii) 
J E S ~ (  T M ) ,  and (iii) ( J X ) h  =O.  Here sp(M) is bundle of endomorphism of TM that 
are pointwise elements of the symplectic Lie algebra. The required sub-bundle of TM 
is then simply Y =  JX. To investigate the consequences of (i)-(iii), differentiate (iii) 
to yield the following identities for U, V, W E  %(XI .  

tho nrinis ;< 
L..* ",.6.,1 "I 

on M hzve the fo!!owing in!riEsic characteriza!ion. !f a E Z ' ( M ) ,  !et >Ye be the EniqEe 

E % ( X i  and "-E &"(&f), ~ ( 0  V-) = '( u-j d p (  v) = U-, v-), 

fie!&. Let %(Y) be the vec!or spare of vector fie!& W E Z ( Y )  SEC!! !hE! for z ! !  

V(JW)h = [ V, JW]h+(JW)Vh 

UV(JW)h = [U ,  [ V, JW]]h + [ V,  JW]Uh + [ U, JW] Vh + (JW) UVh. 
(2.1) 

( 2 . 2 )  



3412 G Martin 

Observe that the first term on the right-hand side of (2.2) is just CjW(  U, V)h.  On the 
cotangent bundle, CJw( U, V )  = 0 is equivalent to the condition that Y is horizontal 
distribution of a linear connection. In this case, (2.2) can be interpreted as the covariant 
derivative with respect to JW of the symmetric partial tensor q (  U, V )  = UVh (which 
equals the fibre metric when U, VE d(X)). In fact, these relations can be analysed 
by a technique similar to the one used to construct the Levi-Civiti connection for a 
metric. In this analysis J plays the role of the connection form. The following proposi- 
tion is the first step in this construction. To state the result, introduce the R-linear 
functional on Zf?(X), 

F(U, V, W ) = [ U , [ V , J W ] ] h + ( J W ) U V h .  

Also, for U E % ( X )  let fi be the 1-form satisfying fi = L( U)w. 

Theorem 2.3. Let J be the almost complex structure satisfying conditions ( 1 )  and (2) 
above. If for U, V, W E % ( X ) W ( J U ) ~ - U V ( J W ) ~ -  WU(JV)h=O, then 

F ( V ,  W, U ) - F ( U ,  V, W ) - F ( W ,  U, V)+dfi(JW,JV)-d?(JU,JW)-d%(JU,JV) 

=2[ U, JV] Wh + Z K (  U ) ( [  V, JW]h + [ W, JV]h) - ZK( W )  

x ( [U ,  JW]h + [ W, JU]h)  + K (  V ) (  U(JW)h - W(JU)h)  

+ K( W ) (  V(JU)h + U(JV)h)  

- K ( U ) ( W ( J V ) ~ +  V(JW)h) .  (2.3) 

Proof: This identity is the result of a lengthy computation. Observe that since 
fiJ=O [ U , J V ] = P L [ U , J V ] + ~ ( V ) J U ,  and also since f'g=O, w ( [ U , J V ] , J W ) =  
P'[ U, JV] Wh - K ( W)P'[ U, J V ] h .  These identities and the fact that dw = 0 give 

[U, J V ]  w -[ U, J W ]  vh 

= d f i ( J W , . l V ) + ~ (  W ) ( V ( J U ) h +  U(JV)h)  

- K( V ) ( [  U, JW]h + [ W ,  JU]h)  + K (  V )  W(JU)h - K (  W )  V ( J U )  h. (2.4) 

Now apply to (2.2) the technique used to compute the Christoffel symbols of a metric 
U 

WhenK(U)=~(V)=~(W)=O,thatis, when U, V, WeSp(X) , (2 .3 )  hasthesame 
form as the expression for the Levi-Civiti covariant derivative where the connection 
appears on the left-hand side as the bracket [U, J V ] .  On T * N  when CJw = 0, this 
expression is precisely the defining relation of the Levi-Civiti covariant derivative D 
since [U, J V ]  is the vertical lift of D,,, ,r*(JV) for U, V E  d(X) (Dombrowski 1962). 
Here i :  X + TN is the identification given by q and the natural identification of VTNp 
with TN,,(p,. In the cases where the horizontal sub-bundles are not linear, theorem 2.3 
extends metric techniques to arbitrary Hamilton-Jacobi distributions. To state what 1s 
true in the general case define C (  U, V, W, Z )  = [ U ,  I V, JWIlZh for U, V, w, z E % ( X ) .  
If C is defined to vanish when any entry is in %'( Y), then C is a partial tensor in U, 
V and Z. The following two theorems give necessary and sufficient conditions on C 
for the distribution, Y = JX, to be Hamilton-Jacobi for a fibrewise quadratic function 
with vanishing discriminant. 

connection, and use (2.4) to simplify the resulting expression. 
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meorem 2.4. A complementary Lagrangian sub-bundle is Hamilton-Jacobi relative to 
a fibrewise quadratic function h = f q ( X , ,  X , )  if and only if ( i )  for U, V,  W E  d ( X )  

U V ( J W ) h = O  ( 2 . 5 )  

(ii) for U, V e d ( X )  

d P ( J U  J V )  =t(c(V, Xp, U, X B )  - C (  U, Xo, V ,  X p ) )  (2.6) 

and (iii) for U E d ( X )  

C ( X , ,  x,, U, X , )  = 0. (2.7) 

Theorem 2.5. For any complementary Lagrangian sub-bundle, UV( JW)h = 0 for U, 
W E  d ( X )  i f  and on!y if for r/, V, W, Z E d ( X )  

ZC(U, V, W,X,)+ZC(Z,  V,  w, U)+2C(Z,  U, w, V)=O. (2.8) 

The condition that the complementary sub-bundle Y be Lagrangian implies by 
lemma 1.1 the additional symmetry C (  U, V ,  W, Z )  = C (  U, V ,  Z, W )  for U, V ,  W, 
Z E 9 9 ( X ) .  However, this relation clearly does not imply that Y is Lagrangian, and so 
the hypothesis that Y be Lagrangian is required. 

The proofs of theorems 2.4 and 2.5 will be presented in the next section. Theorem 
2.5 allows one to replace condition (i) in theorem 2.4 with a first order partial differential 
equation for C. With this substitution (2.6), (2.7) and (2.8) form a system of algebro- 
partial differential equations that, when solved, give Hamilton-Jacobi sub-bundles for 
fibrewise quadratic functions. The advantage of this system over the original system, 
namely ( J W ) h  = 0, is that these equations are completely determined by the vertical 
properties of the distribution and can be solved without reference to the topology of 
the base manifold. Before giving the proofs of theorems 2.4 and 2.5 let us consider a 
method for solving (2.5), (2.6) and (2.7) o n  the cotangent bundle. The idea is to use 
the horizontal sub-bundle of the Levi-Civita connection to find a potential for C. 

Let Yo be the horizontal distribution of  the Levi-CivitP connection on T*N for a 
metric q on N that induces the same tibre metric as  h. Let Jo be the corresponding 
almost complex structure. Since Yo is the horizontal distribution of a linear connection 
CO( U, V, W, Z )  = [ U ,  [ V ,  Jo W ] ] Z h  = 0. Using this fact, a solution to (2.61, (2.7) and 
(2.8) can be constructed from a section A of  the bundle, S 2 ( X ) ,  of covariant symmetric 
2-tensor field in X. The section A will serve as a potential for C. Since for U, V E 2( Yo), 
A(J,,U, J,V) is a symmetric 2-tensor field o n  Yo, by a standard construction (Guillemin 
and Stetriberg i977 
is complementary to X .  This sub-bundle can iden!ified as the p a p h  of an endomorphism 
d: Y , + X  In terms of A, .d is given by 99 = AJ,, where A is the endomorphism of 
X d u a l t o A ; t h a t i s , g ( U , A V ) = A ( U , V ) f o r  U, V E ~ ( X ) .  

Lemma 2.6. The almost complex structure J determined by Y is given by 

i7g)  one cdn wiih A a Lagrangian sub-bun&e y that 

J = (1  + 9 9 ) J , ( l -  d) (2.9) 

and if for U, V, W, Z E d ( X ) ,  C( U, V ,  W, Z )  = [ U, [ V, JW]]Zh then 

C (  U, V, W, Z )  = UVA( W, Z ) .  (2.10) 
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Proof First (2.9) follows easily from the construction of J given at the beginning 
of this section. To see (2.10) note that any pair of almost complex structures J 
and I' compatible with the same fibre metric satisfy J U - J ' U E  %(X) for all 
UE&(X) .  Consequently, (2.9) and the fact that C,=O imply C (  U, V, W , Z ) =  

0 

To find a section A of S 2 ( X )  that gives a solution to (2 .6) ,  (2.7) and (2.8). first 

Ythe2-formfe 5Z2(X)givenhyf(U, V)=dP(JU, JV)for U, V~E'(X),isindependent 
of the choice of Y.  This follows from the fact that for U E E'(X), I (  U)(dp - w )  = 0 
and the fact that Y is Lagrangian. 

Theorem 2.7. If Cor any v-radial X, the section A of S ' ( X )  is defined by 

[U, [ V, dJ,, W]]Zh = UVA( W, Z ) .  

0'aserve ihai foor any y-radiai fieid .& and any comp;emenidry Lagrangian sub-bundie - 

then for U, V, W, Z E ~ ( X ) ,  C (  U, V, W , Z ) =  UVA(Z, W )  satisfies (2 .6) ,  (2.7), and 
(2.8). 

- hnnf  . --,. !t is a_ rather !ergthy ca_!cu!ation to verify that C is a solution to (2,6), (27) 
and (2.8). In these computations it is important to realize that C is not tensorial when 
evaluated on X,. U 

The theorem can also be verified directly by checking that Yh = 0, and then using 
the equivalence given by theorems 2.4 and 2.5. The real utility of theorem 2.4 or in 
particular (2.6) to this example is that it suggests the form of the potential A. 

Theorem 2.7 gives a universal construction of Hamilton-Jacobi sub-bundles for 
quadratic Hamiltonians. In the section 4 these sub-bundles will be appled to investigate 
the relation between torsion and the Lorentz force law. In preparation, consider the 
following example. 

Example 2.1. Let N =W'; then T * N  =W2xR2. Consider the magnetic Hamiltonian 
h = f ( ( p , + B ~ , ) ~ + ( p ~ - B x , ) ~ )  for some BEW. In this case 

P = (PI + BxJ dx, + (p2 - Bx,) dx,, Xp =(PI  + BX&/ap, +(PI - BX, )J/aPz 

and 

d P = d p , ~ d x , + d p 2 ~ d x 2 + 2 B d X 2 A d x , .  

So j= 2B dp2 n dp, and therefore 

2 8  
A =  

(PI + W2+ (P~-BxI) '  

x ( ( P I +  Bxd(p2- EX,) ~ ~ : + ( ( P ~ - B X I ) '  

- ( p !  + EX!)') dp! dp,- (PI + B ~ Z ) ( P ~ -  

Let X = O X  R2 be the vertical sub-bundle and let Yo= W'x 0 he the natural horizontal. 
The sub-bundle Y determined by A is the graph of d: Yo+X. SO 

dP:). 
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is a basis for Y, and it is easy to see that 

for i = 1,2.  

3. Proofs of theorems 2.4 and 2.5 

This section presents the proofs of theorems 2.4 and 2.5. The following arguments will 
show that (2.6), (2.7), and (2.8) give a sufficient set of conditions that a sub-bundle is 
a Hamilton-Jacobi distribution. It is not hard to see that the arguments are reversible 
and so (2.6), (2.7) and (2.8) are also necessary. 

Lemma 3.1. If X, is 7-radial, then for U, V E . ~ ( X ) ,  

F(U,X,, V)=F(X, ,U,V)+U(JV)h.  

Proof: The identity follows form the definition of F and the Jacobi identity. 

Lemma3.2. I f for  U, V ,  W E ~ ( X ) ,  UV(JW)h=O,thenforall  U, V E ~ ( X )  

d fi(JX,, JV) + d?(JXp, J U )  - F (  U, V,  X,) = 0 (3.1) 

Proof: The fact that dw = 0 implies that 

d f i (JX, ,  IV)+d  C(JX,, J U )  - F( U, V, X,) 

= -[[U, [ V ,  JXp]]h + [ V,  JXp] Uh +[ U, JXp] Vh 

+(JX,)UVh]+ V(JU)+U(JV)h. (3.2) 

Now let [ E l , .  . . , E.}, E, E .d(X) be a basis of affine fields. There exists functions 
[p,, , , . , p n } , p z  E 9 ( M )  such that X, = T,:=l p,E, ,  and for all U E  %'(X), U = E:=, Up,E,. 
Hence for all U, VE d ( X ) ,  

[ U ,  [ v, JXpIl = [ U ,  JVI+[ v, JUl+ 1 P J  U, [V, JE11 
, = I  

and 

[U,JXp]Vh=(JU)Vh+ L p,[U,JE,]Vh. ,=, 
Substituting these expressions into (2.2) and using UV(JW)h = O  gives (3.1). 0 

Proofoftheorem 2.4. First notice that UV(JW)h = O  for U, V,  WE d ( X )  implies that 
VX,(JU)h+ UV(JX,)h+XpU(JV)h =0, and so (2.3) holds when W=X, and U, 
V e d ( X ) .  Applying (3.1) to (2.3) gives 

F(V,Xp, U)-F(Xp,  U, V)-dP(JU,JV) 
= V(JU) h + U(JV)h +2( [ U, JV]h - [ V, IU]  h). (3.3) 

(3.4) 

Using lemma 3.1 one otains 

F( V,  Xp, U ) -  F (  U, Xp, V)-dP(JU, J V ) =  V(JU)h+2([U, JV1h-L V,  JUlh). 
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The symmetric part of this expression is U ( J V ) h +  V ( J U ) h  =O. From the definition 
of F, it follows that the skew-symmetric part of (3.4) is 

[V ,  [ X p , J U ] l h - [  U, [Xp,  JV]lh-d/3(JU,  JV)=3(  U ( J V ) h -  V ( J U ) h ) .  

Equation (2.6) now implies that U ( J V ) h  = O .  From this fact it follows that for U, 
V E  sP(X),  UX,(JV)h = O  and consequently (2.2) implies that [U, [X, ,JV]]h = 
-[X,,JV]Uh. Next note that for U E % ( X )  and V e d ( X ) ,  [ U , J V ] h =  
A i = ,  Pjl" .  J "  ,"(". I11TbCi U " J G I Y P L l U l l D  ,,,,ply Lnal - r r ,  ,,,,EL I%*-- -L-"."...&:--" :...-a .. .L^. 

Z(JV)h=-[Xp,JVIh= - pj[X,,JV]Ejh= 1 p,[E, ,[X, ,JV]]h 
i - l  i = l  

[ Xp , [ Xp, J V ] ]  h - 2(JV)  h. 

U 

This completes the proof of theorem 2.4. The following lemma is required for the 

n..+ r y  r y  r v i i h = ? r i ~  Y I I Y  1 "-A ",. 1971 ..,.... :--con i n n - n  
""I LILp,  L l l g , "  I ,,.. 2"\",, z .p,  I ' . P I ,  Y.." a., LA.,, L l Y l l  " U y L L b "  ,., . ," -". 
proof of theorem 2.5. 

Lemma 3.3. If for U, V,  W e s P ( X ) ,  

r( U, V, W )  = ( I U )  VWh - ( J W )  Uyh - ( J V )  WUh +dfi(JW, JV)  

- d f ( J U , J W ) - d @ ( J U , J V )  

then r is independent of Y. 

fiooJ if i and i' are defined by ihe same fibre meiric, ihen for aii V E  2 ( X )  Jv'- 
J ' V E Z ( X ) .  Since for all V E ~ ( X ) ' ( V ) d ~ = ' ( ~ , U ) O ,  it follows that for 
U E . ~ ( X ) , ~ ~ ~ ( J V - J ' V , J W ) = O .  This in turn implies that d f i ( J V , J W ) =  
d f i ( J ' V , J ' W ) .  U 

Proof of theorem 2.5. For U, V ,  W E  d(X) let 

G(U,  V ,  W ) = - (  ; C(V,  w, U,X , ) -C(W,  U, V ,X, ) -C(U,  V, W,Xp) .  

Note that (2.3) can be expressed as a sum of G and r. In fact, when UV(JW)h  = O  
for U, V, W E . ~ ( X ) ,  2 [U,JV]Wh=G(U,  V,  W ) + r ( U ,  V, W).  Suppose that for a 
given Y (2.8) holds. Define D , U E % ( X )  by the expression 2(DvU)Wh= 
G( U, V, W)+T( U, V,  W )  for U, V, W E ~ ( X ) .  Then lemma 3.3 and (2.8) imply that 
f o r Z E s P ( X ) , Z ( D v U ) W h  = C ( Z ,  U, V, W).Consequentiy,Z(D,U)Wh issymmetric 
in Z and U and so locally there exists a J' such that (i) J 'E sp(TM), (ii) X is a real 
subspace for J', (iii) ( D y U ) W h = [ U ,  / ' V I M ,  and (iv) at some point p e M ,  
[U,J'V]Wh(p)=[U,JV]Wh(p). Hence C ( Z ,  U, V,  W ) = [ Z , [ U , J ' V ] ] W h .  If r a n d  
G' are defined by the same expressions that defined r and G but with J replaced by 
J ' ,  then the previous equality and lemma 5.3 imply that G (  U, V ,  W)+T(  U, V,  W )  = 
Gi(U, V, W ) + T ' ( U ,  V ,  W ) .  Since by construction when j is repiaced by j '  (2.2) 
vanishes on affine fields, it now follows that V W ( J U ) h -  UV(JW)h - WU(JV)h  = 
2[U,  ( J ' V - J V ) ]  W. But the initial condition (iv) implies that J ' V - J V E ~ P ( X ) ,  and 
since h is quadratic it follows that V W ( J U ) h  - U V ( I W ) h  - WV(JW)h  =O.  Therefore 

U I satisfies (2.3) and so (2.2) vanishes on affine fields. 



Hamilton-Jacobi distributions 3417 

4. The Lorentz force law 

In this section I will apply the techniques of the previous sections to the physically 
important example of a second order dynamical system with a fibrewise quadratic 
Hamiltonian, namely, the Lorentz force law. Using theorem 2.1 a metric can be 
constructed on T* N with the properties that the dynamical vector field of the Lorentz 
force law is a Lorentz vector field relative to a metric connection that is horizontally 

horizontal torsion. The general procedure for constructing these connections is presen- 
ted in the following theorem (Martin 1987). Suppose that M is an almost Kahler 
manifold with almost complex structure J, Hermitian metric g and fundamental 2-form 
p, and suppose that M possesses a real Lagrangian sub-bundle X .  Then JX = Y is 
also a real Lagrangian sub-bundle. Recall that P i s  the (1, 1)-tensor field that projects 
T.%! ontn k' with kerne! X ,  axd !e: ?' = 1 - 

Theorem 4.1. For any pair of (1,2)-tensors K and H defined in the sub-bundles X 
and Y respectively, there is a unique linear connection V with torsion T that satisfies 
V P = V J = O a n d V p = V g = O a n d f o r w h i c h  P ' T ( U , V ) = K ( U ,  V)for  U, V E % ( X )  
and PT( U, V )  = H( U, V )  for U, V E  2( Y ) .  

F'rooJ Any connection of this type, that is, an almost Kahler connection for which 
X and Y are parallel distributions, can be constructed using the decomposition 
% ( M ) = % ( X ) O % ( Y ) .  For U, V, W E % I ( Y ) ,  define V , V E Z ( Y )  by the expression 

jq'iiiiiizifii is a for a iiietiic coiineciion nonvan i j~ ing  

br :he cnfi-p!ezexta:y prnjec:inn. 

g ( V , V ,  W = i I U g ( V ,  W ) + V g ( U ,  W ) - W g ( U ,  V ) - g ( P [ U ,  WI, V )  

-g(H(V, W ) ,  U ) + g ( H ( U ,  V ) ,  W ) } .  

- g ( P [ V .  W ] ,  U ) + g ( P [ U 2  VI, W ) - g ( H ( U :  W ) ,  V )  

(4.1) 
A similar expression gives V,V for U, V E % ( X ) .  For U E E ( X )  and V E % ( Y )  let 
VclV=-JV.JV and V,U=-JV.JU. It is easy to see that V P = V J = O ,  and because 
X and Y are Lagrangian, V p  = V g  = 0. 

In the case that J is complex, the torsion of the connections constructed in theorem 
4.1 are of type (1, 1) if H (  U, V ) =  K ( J U ,  JV) .  

Connections adapted to  the dynamical vector field of the Lorentz force law will 
be constructed by applying theorem 4.1 to the cotangent bundle T * N  of a pseudo. 
Riemannian manifold with a Lorentz metric q. Recall that y:W+ N is a solution to 
the Lorentz force law with field strength e E Z 2 ( M )  if Diy  = gy, where D is the 
Levi-CivitA connection and e* is the Faraday tensor obtained by dualizing one index 
of e. To construct the Hamiltonian of the Lorentz force law, assume that e is exact; 
that is, e = d a  for some a €  8 " ( X ) .  If DI is the tautological I-form on T'N and if 
p = a  - T*a, then X ,  and X ,  are v-radial vector fields. The metric on N induces a 
fibre metric on the vertical sub-bundle VT*N also denoted by q. It is easy to see that 
the fibrewise quadratic functions h = f q ( X , ,  X , )  and h'=fq(X,, X,) are respectively 
the geodesic and Lorentz force law Hamiltonians. The Hamiltonian vector tield Z' for 
h' given by L(Z')W = -dh'. It is, however, not the dynamical vector field for the Lorentz 
force law that will be used. Rather the correct dynamical vector field Z is obtained 
from Z 'by  translation; Z is given by Z = t,Z' where t, : T*N + T*N is the translation 
in the fibre; t . ( p ) = p + ~ * a ( ~ ( p ) ) .  
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To define the geometric structures on T * N  needed to apply theorem 4.1, let 
X =  VT*N and let p = w + a * e  be the Kahler form (Souriau 1970). By theorem 2.7, 
there is a global Hamilton-Jacobi sub-bundle Y' for h' that is defined away from the 
light cone of T*N. A calculation gives the following lemma. 

Lemma 4.2. If Y' is a Hamilton-Jacobi sub-bundle for h', and if Y = 6L.. Y', then 
Yh=Oand w l y = - a * e .  

Proof: This follows from the definition of Y', since w l y  = (t?,,w)l y' = ( w  - a*e)l Y .  = 
-rr*elY. U 

Lemma 4.2 implies that Y is a Lagrangian sub-bundle of T*N relative to p, and 
so by the construction in section 2, there is an almost Kahler structure on T * N  with 
symplectic form p and almost Hermitian metric g. 

By theorem 4.1 a connection that preserves the almost Kahler structure and the 
decomposition TT*N = X O  Y is uniquely determined by its torsion T along X and 
Y. A connection will be called semi-symmetric if for U, V E % ( X ) ,  PIT(  U, V) = 0 and 
for U, V E  E( Y ) ,  PT( U, V) = 0. If the torsion satisfies for U, V E  fZ'( Y )  

a ( T ( U ,  V ) ) = w ( U ,  V) (4.2) 

then the connection is said to be consistent. Consistent connections have the following 
interpretation. Recall that if S is the torsion of a linear connection D on N, and if for 
V E % ( N ) ,  is the horizontal l i f z f  V to the cotangent bundle, then Cartan's first 
structure equation states that a( T (  U, V)) = w (  U, V) for U, V E  & ( N ) .  SincLD can 
be lifted to a connec&n D on T * N  with horizontal part given by 6 2  ? = OXY and 
torsion P$(J?, ?) = S ( X ,  Y) (Dombrowski 1962), (4.2) can be viewed as an extension 
of the first structure equation to arbitrary horizontal sub-bundles. Also, for the choice 
of Y given in lemma 4.2, equation (4.2) relates the torsion of V to the electromagnetic 
force since w /  = -a*e. 

To obtain a relation between the Lorentz force law and the choice of torsion in 
theorem 4.1, recall that the dynamical vector field Z E %( T * N )  satisfies L ( Z ) ~  = -dh, 
and so is Hamiltonian for the metric Hamiltonian relative to the symplectic form p. 
The vector field Z can also be characterized as follows (Grifone 1972) (Crampin 1983). 

Lemma 4.3. If Z E E( T * N )  is defined by L ( Z ) ~  = -dh, then JX, = Z. 

Proof: By lemma 4.2, Y is Lagrangian for p and so Z E %( Y ) .  Therefore p ( Z ,  U) = 
U 

Next notice that given a non-Lagrangian horizontal sub-bundle Y, there is a 
(1, 1)-tensor F on T*N that is naturally associated with Y. If 'a denotes the transpose 
relative to w and if P is the projection onto Y along X ,  then F is defined by 
F = P - (P'm)l. Note that F = 0 if and only if Y is Lagrangian, and that ran( F )  C X C 
ker(F). F can be interpreted as a metric-independent Faraday tensor. In fact, F is the 
mixed lift of the Faraday tensor to T * N  when Y is tangent to a complete solution to 
the Hamilton-Jacobi equation for the Lorentz force law. 

Theorem 4.4. Let V be an almost Kahler connection determined by Y and p. ( i )  If V 
is semi-symmetric then V,Z = JFZ. (ii) If V is consistent then VzZ = 0. 

-dh(U)=-g(X,, U ) = p ( J X , ,  U). SO J X , = Z .  
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ProoJ First note that if U, V E  E( Y )  then U (  U, V )  = w(FU, V ) .  Lemma 4.2 and the 
factthat F ' . = F t h e n i m p l y t h a t ~ ~ = w - f i ( F ) w .  Sincefor U E E ( X ) , L ( U ) ~ = L ( U ) ~ ,  
it follows that i ( F ) w =  i ( F ) p  But V p = O  and so V w = f i ( V F ) o .  Now for U, V E  
%B(T*N) 

w (  U, V )  = d a (  U, V )  = V  ua( V )  - V , a (  U )  + a ( T (  U, V ) ) .  (4.3) 

But, for VEFZ(X)i(V)L(VF)w=O, and so V u a ( V ) = ( V , o ) ( X , ,  V ) + w ( V , X . ,  V ) =  
w(VuX..  V ) .  Therefore (4.3) gives for U E  %B( Y )  

g ( V r z ,  '-')=g(JVzX,, U ) = - g ( V z X , ,  J U ) = w ( V z X , ,  U )  

= w(V,X, ,  Z ) + w ( Z ,  X ) + a (  T ( Z ,  U ) ) .  

By lemma 4.2 w(VuX, ,  Z )  = Uh = 0, and so (1) and (2) now follow from the definition 
of F and (4.2). 0 

Theorem 4.4 shows that the extension of the first structure equation given by (4.2) 
prescribes the torsion required to make the Lorentz dynamical vector field a geodesic 
vector field. There are many choices of torsion along Y that satisfy (4.2). For instance, 
if U, V E  %B( Y ) ,  then 

PT(U, V ) = - Z O T * e ( U ,  V ) / g ( X , , X , )  (4.4) 

is one such choice. 

Example 2.1 continued. Let N =R2 and let Yo be the natural horizontal sub-bundle; 
Yol(x,p) =R2x0.  Consider the vector potential a ( x , .  x2) = ( -Ex2 ,  Ex , )  for BER,  and 
let Y' be the horizontal Lagrangian sub-bundle constructed in example 2.1. Let 
Y = L..Y'. Y is the graph of d: Yo+ X .  Relative to the bases {J/Jx,, a/JxJ of Yo 
and {J/p,, J/Jp2} of X ,  d has the matrix 

d=- 2 8  PIP2 P: 
P:+P: [-p: -P,PJ 

Let Jo and go be the almost complex structure and Hermitian metric determined by 
Yo.  The almost complex structure defined by Y is J = (1  + d ) J o (  1 -d) and from the 
construction of the almost Hermitian structure one sees that for U, V E  %B( Yo), g(  U +  
d U ,  V +  d V )  = g(JoU, JoV).  Let V be the metric connection with torsion along Y given 
by (4.4). Note that since d is independent of (x,, x2) for U, V E  X( Yo), [ U ,  d V ] +  
[&U, VI = d[ U, VI,  and consequently if P projects onto Y along X ,  then P [  U +  
&U, V + d V ] = [ U ,  V ] + d [ U ,  VI.  Therefore if one sets for U, v, W E X ( Y , ) ,  U =  
U + d U ,  v =  V+SIV, and W =  W+SIPW, then (4.1) becomes 

1 
Pl+P2 

g(viiV, W ) = g o ( v u v ,  W)+--ii[gdz,, V ) e ( U ,  w )  

+go(Zo ,  UMV, W ) - g o ( z o ,  W)e (U,  V ) l  

where Z ,  = JoX, is the flat metric Hamiltonian flow. Now 

z=zo+53zo= 1 pi -+SI-- 
i f ,  J:;) 
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and so 
2 

g ( V , z ,  W) = Zp,g, + 7i*e(zo,  W )  =o 
i=, 

since (Zp , ,  Zp2)=(2Bp, ,  -2Ep,), and e = 2 B d x l  ~ d x , .  

S. Torsion and the electromagnetic field 

The results of the previous section suggest that the electromagnetic field can be 
represented by the torsion of a linear connection on the cotangent bundle. The idea 
that the torsion of a linear connection may be associated with the electromagnetic field 
goes back to the parallelizable theories of gravity and electromagnetism due to Einstein 
and Cartan (Cartan and Einstein 1979). The difference between the approach in this 
article and the earlier work is that Einstein and Cartan sought such connections on 
spacetime. It follows from theorem 2.4 that there are no linear connections for which 
the solution to the Lorentz force law are geodesic. Theorem 4.5, however, suggests 
that an equivalence between torsion and the electromagnetic field may exist on the 
cotangent bundle of spacetime. 

To investigate this possibility requires a refinement of the construction given in the 
last section. The shortcoming of the presentation so far is that the role of the electric 
charge has been suppressed. Consequently, the consistent connections defined by (4.4) 
give geodesic motion only for a fixed charge. However, if torsion is to represent the 
mechanical effects ofthe electromagnetic field, then the connection should give geodesic 
motion for all non-vanishing values of the charge. 

One way to introduce charge as a degree of freedom is to interpret charge as a 
scale factor for the dynamical flow of the Lorentz force law 2, (Z in the previous 
section). Recall that y:R+ N is charge 9 solution of the Lorentz force law if D y y =  
ke*(y) and = k/lyl, where D is the Levi-Civiti connection on N. To see how charge 
arises from a scale change, let P E  yt( T * N )  be given by ~ ( p ) = ) q ( p , p ) J ” ~  and let 
Z = p’Z,,. The particle dynamics specified by Z is determined by the inverse Legendre 
map X : T * N + . T N  given by X = r . J .  i t  is easy to see that the iegendre map 
2: T N +  T*N is given by 2 = ~ ‘ 2 ~ ,  where 2 , , (u ) (u )=  q(u ,  U )  is the inverse of Zo= 
v*Z, ,  u ( u )  = 1q(u, II)~’’~, and r = -k/(k+ 1). Hence, Z is invertible except in the case 
where k = -1 which corresponds to the constrained Hamiltonian. A vector field X E 
R(N) is a solution vectorfieldfor Z if (20 X),X =Z,.,. To determine the second 
order equations on N that are satisfied by solution vector fields for Z, recall that 

q(DxX, W) = ( i (X)  d2oo X + t d ( 2 0 0  X(X)))( W ) .  

Theorem 5.1. Let Z ,  be the dynamical vector field of the Lorentz force force law 
D,X = P(X). If Z = pkZ, for k # -1,  then solution vector fields for Z satisfy DxX = 
u-‘(x)e*(x). 

Proof: To verify this relation compute 

(2~x)*l((~~x)*x-zy.x)w=o.  
First note that since i (Z)p=dpk+*/ (k+2) ,  L ,Z=(k+l )Z+E,  where E E % ( T * N )  
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is given by ~ ( E ) @ = ~ ( z ) a * e .  From this identity it follows that L(Z)O= 
- 1 / ( k + 2 ) d u ( Z ) + ~ ( Z ) n * e .  Substituting this equation into (5.1) gives 

1 
k i 2  

L ( X )  d 2 0  X+-d(20 X ( X ) ) - r ( X ) e  = O  

Now 9 0 X = ~ ' - 9 ~  0 X, and a further computation shows that this identity is 
equivalent to 

But this relation also implies X v ( X )  = 0. U 

Theorem 5.1 shows that the freedom in relativity to choose parametrizations can 
be exploited to provide a representation of non-vanishing positively charged solutions 
to the Lorentz force law. Here the charge is related to the length of X by f = v-''"'(X). 

To interpret theorem 5.1 in the context of the previous section, note that Z can 
also be obtained from a scaled fibre metric and X,. In fact, if q is given by q = pxqo.  
where qo is now the vertical lift of the spacetime metric, then Z=pkZo= JX,. Con- 
sequently, the conclusions of theorem 4.5 are still valid for the scaled Z, and so (4.4) 
gives a metric connection on T* N for which Z is a geodesic vector field. The geometry 
of fibre metrics conformal to the affine metric and their application to relativity was 
developed in Martin (1987, 1989). For the details I refer the reader to these articles. 
One interesting application of (Martin 1989) to this article is that when k=-2,  it is 
possible to choose the torsion along Y so that the connection is consistent and so that 
the torsion vanishes along an arbitrary horizontal Lagrangian sub-bundle. Suppose 
that a horizontal Lagrangian sub-bundle H is the graph of d: Y + X. Iffor U, V E  %( Y), 
(4.4) is replace by 

1 

P 
pY(U,  V)=,[w(U, V)Z+w(X,, V)JJSU-w(X,, U ) J d V  

+ w(X,, M U )  V- w ( X , ,  J d V )  U] 

the component of T along H vanishes; that is, if P' is the projection onto H along 
X, then P'T(P'U, P'V)=O for all U, V E % I ( T * N ) .  Hence when the conformal fibre 
metric is p2qo. consistent connections can in particular be made symmetric along the 
horizontal sub-bundle of the Levi-Civita connection. From Martin (1989), in the case 
where k = -2 parallel translation in vertical sub-bundle projects to Fermi transport 
along curves on N when the translation is taken along the natural lift. So this discussion 
has led to a global relation between the electromagnetic field and special relativity 
since the symmetry along a Lagrangian horizontal sub-bundle of the 'geodesizing' 
connection for the Lorentz force law implies Fermi transport. 
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